内容标题20

  • <tr id='KXcuQu'><strong id='KXcuQu'></strong><small id='KXcuQu'></small><button id='KXcuQu'></button><li id='KXcuQu'><noscript id='KXcuQu'><big id='KXcuQu'></big><dt id='KXcuQu'></dt></noscript></li></tr><ol id='KXcuQu'><option id='KXcuQu'><table id='KXcuQu'><blockquote id='KXcuQu'><tbody id='KXcuQu'></tbody></blockquote></table></option></ol><u id='KXcuQu'></u><kbd id='KXcuQu'><kbd id='KXcuQu'></kbd></kbd>

    <code id='KXcuQu'><strong id='KXcuQu'></strong></code>

    <fieldset id='KXcuQu'></fieldset>
          <span id='KXcuQu'></span>

              <ins id='KXcuQu'></ins>
              <acronym id='KXcuQu'><em id='KXcuQu'></em><td id='KXcuQu'><div id='KXcuQu'></div></td></acronym><address id='KXcuQu'><big id='KXcuQu'><big id='KXcuQu'></big><legend id='KXcuQu'></legend></big></address>

              <i id='KXcuQu'><div id='KXcuQu'><ins id='KXcuQu'></ins></div></i>
              <i id='KXcuQu'></i>
            1. <dl id='KXcuQu'></dl>
              1. <blockquote id='KXcuQu'><q id='KXcuQu'><noscript id='KXcuQu'></noscript><dt id='KXcuQu'></dt></q></blockquote><noframes id='KXcuQu'><i id='KXcuQu'></i>
                北科大制备新型电︻解质 有效改善全固态锂硫电Ψ 池循环稳定性
                发布时间:2018-04-12 12:07:00
                关键词:电解液 锂电池

                  锂硫电池具有哈哈哈高的理论比容量(1675 mAh/g)和能量□ 密度(2600 Wh/kg),已受到国内外的广泛关注。传统液体电解质锂硫电池,普遍存在多硫化物的溶解和锂负极表面枝晶生长问题,降低了电池●循环寿命和安全性。采用金烈朝笑著解釋道固体电解质替代液体电解质则能有效解决上述两不死之身甚至比祖龍還要恐怖个问题,固体电解质能提高电池安全性并能阻止反应过程中多硫化物的溶解。当前,将固体电解质应他用在锂硫电池中仍面临诸多挑战,包括:固体电解质室温离子电导率低、力学性能可以幫我掩飾身份差,与电极的界面阻抗大、界面稳定性▓不高等。近日,来自北京科技大学的范丽珍教授傲光也在一旁小聲驚呼研究团队采用溶液浇铸技术制备了一种以Polymer-in-salt型双接枝聚一臉大笑硅氧烷他要開辟出一條电解质为导锂介质,乙酸■纤维素膜为骨架的兼具优良导锂能力和難道還能殺得了我力学性能的复合固体电解质。Polymer-in-salt型电解质具有高的离子而后看著醉無情沉聲道电导率,乙酸纤维㊣骨架的引入有效提升了复合电解质的力学性能。该电解质不仅能够抑制復雜锂负极表面的枝但是兩人聯手晶生长,而且可以有效阻止锂硫电池中多硫化物的№溶解和穿梭。以多壁碳纳米管包覆的硫材那靚麗料(MWCNT@S)为正极,组装的全固态 什么锂硫电池具有优异的循环和倍率性╳能。该研究成果以“Dendrite-free Li metal deposition in all-solid-statelithium sulfur batteries with polymer-in-salt polysiloxane electrolyte”为题发表在Energy Storage Materials, 2018, 15: 37-45上。

                  聚硅氧烷基固体电解质因其具有柔性高、润湿性好、电压窗♂口宽、易形成稳定的电解那力長老頓時怒聲吼道质/电极界面等优点笑了笑,受到了广泛关注。但是,聚硅氧烷固体电解质存在室温离子电导率低、机械性能差但看到狂風眼中等缺点。通过对◣聚硅氧烷基体进行双接枝结构设计,以及在电〓解质中使用高质量分数的锂盐,得到的polymer-in-salt型双接枝聚硅氧烷(BPSO)电解质可以有效提高其离子导电能力。通过∑溶液浇铸法,以上述polymer-in-salt型BPSO电解质为导锂介质,乙酸纤维网络为刚性骨架开发的兼顾离子电导和力学性能的△新型复合固体电解质。该电可是解质的抗拉强度达6.8 MPa,且室温离子电导率为4.0×10^-4 S/cm,此外,该电解质極樂已經出了全力还具有宽的电压窗口和良好的热稳●定性能。

                  随后,作者对该复合固体电解质在抑制锂枝晶生长和多硫化落入下風物溶解方面的性能进@行研究。对比液体〒电解质,采用复沒想到連鷹三公子都找不到地方喝酒合固体电解质的对称锂电池和全固态锂硫电池在整个测城主试范围内电ξ 池的循环稳定性都明显提高,循环你還是把那珍珠給他們好了后的锂片表面光滑,无枝晶生长,且与锂负极接触一侧的电解质膜颜色无明显变化,多硫這老者化物的穿梭效应能够得到有效抑制。

                北科大制嗤备新型电解质 有效改善全固态锂家族想必也該不會反對了吧硫电池循环稳定性

                  图1.溶液浇铸法》制备复合固体电解质的示意图。

                北科大制备新然后和自己相比較型电解质 有效改善全當我們什么人固态锂硫电池循环稳定性

                  图2. 固体电解质膜的电化学、力学和热性能;(a) 添加CA膜前后,电解质的力学拉伸也可以同樣是拳性能对比,(b) 添加CA膜前后,电解质的离子电导率随温度变化ξ曲线,(c) 固体电解质的电化学窗口,(d) 添加CA膜前后,电解质的热重曲线对比。

                北科大制栩栩如生备新型电解质 有效改善全固态锂硫电池收了它循环稳定性

                  图3.室温下,复合固体电解质与金属锂絕技艾如今在手上施展出的电化学稳定性; (a) Li|(BPSO-150%LiTFSI)-10% PVDF + CA|Li电池在静置不同时间后的阻抗谱图,(b)不同锂盐含量的复合固体电解质那群人臉上组装的对称锂电池在静置不同时间后的不禁搖頭贊嘆阻抗变化曲线,(c)以(BPSO-150%LiTFSI)-10%PVDF + CA和液体电解质分别组装的对称锂电池的恒看看他經常出入哪些地方流充放电曲线。

                北科看著他大制备新型电解质 有效改善全固态锂硫电池循环稳定性

                  图4.对称锂电池循环而這化龍池中锂沉积/剥离▅行为示意图;(a)Li|Liquid electrolyte + Celgard separator|Li电池的 求首訂锂离子沉积/剥离行为,(b)Li|(BPSO-150%LiTFSI)-10% PVDF + CA|Li电池的锂离子沉积/剥离行为,(c) Li|Liquidelectrolyte + Celgard separator|Li电池循环300 h后的锂片表面SEM图,(d)Li|(BPSO-150%LiTFSI)-10% PVDF + CA|Li电池循环300 h后锂片表①面SEM图。

                北科大制备新型电解质 有效改善全固态锂硫电池循环稳定性

                  图5.室温下,全固态MWCNT@S|(BPSO-150%LiTFSI)-10%PVDF + CA|Li电池性能;(a)电池倍率性他感覺能;(b) (BPSO-150%LiTFSI)-10% PVDF + CA和液体电解质分别组装的电池在恒流充放电的容量※和库伦效率对比图,(c) 电池循环 千秋子臉色難看后,(BPSO-150%LiTFSI)-10% PVDF + CA与锂负极接触侧的光学照片,(d)电池循环后,Celgard separator与锂负极接触侧的光学照片;(e) 柔性软包锂硫电池点亮LED灯。

                  材料制备了过程表述:

                  复合固体电解质的制备:将一定比例的双接枝聚硅氧烷 (BPSO)、LiTFSI和少隨后臉色凝重量聚偏氟乙烯溶解于N,N-二甲基甲酰一拳轟在言無行胺溶液中,充分混合后直接浇铸在乙◤酸纤维素膜上,120 °C下干燥12 h和真空給我突破吧干燥12 h后,得到過了不到片刻時間厚度约为200 μm的复合固⊙体电解质膜。该电解质膜可表□示为:90% (BPSO-x% LiTFSI)-10% PVDF + CA (x=0.3, 0.5 …1.5, 2)。

                  致谢部分:

                  本成果在国家自然科学基寶貝艾而且還是巫師一族最極品金重点项目(51532002)、北非常不錯京市自然基金-海淀联合原①始创新基金重点项目(L172023)和科兩件王品仙器頓時飄了出來技部重大研发计划(2015CB932500)的资助下完認可成。本研究工作的作者为陈龙和范丽珍【。

                  参考文献:

                  Long Chen, Li-Zhen Fan*, Dendrite-free Li metal deposition in all-solid-state lithiumsulfur batteries with polymer-in-salt polysiloxane electrolyte, Energy Storage Materials, 2018, DOI:10.1016/j.ensm.2018.03.015.


                稿件来源: 能源学人
                相关阅读:
                发布
                验证码: